An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis.
نویسندگان
چکیده
Rrp6-mediated nuclear RNA surveillance tunes eukaryotic transcriptomes through noncoding RNA degradation and mRNA quality control, including exosomal RNA decay and transcript retention triggered by defective RNA processing. It is unclear whether Rrp6 can positively regulate noncoding RNAs and whether RNA retention occurs in normal cells. Here we report that AtRRP6L1, an Arabidopsis Rrp6-like protein, controls RNA-directed DNA methylation through positive regulation of noncoding RNAs. Discovered in a forward genetic screen, AtRRP6L1 mutations decrease DNA methylation independently of exosomal RNA degradation. Accumulation of Pol V-transcribed scaffold RNAs requires AtRRP6L1 that binds to RNAs in vitro and in vivo. AtRRP6L1 helps retain Pol V-transcribed RNAs in chromatin to enable their scaffold function. In addition, AtRRP6L1 is required for genome-wide Pol IV-dependent siRNA production that may involve retention of Pol IV transcripts. Our results suggest that AtRRP6L1 functions in epigenetic regulation by helping with the retention of noncoding RNAs in normal cells.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملDomains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis.
DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase domains rearranged methylase 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catal...
متن کاملArabidopsis C-Terminal Domain Phosphatase-Like 1 Functions in miRNA Accumulation and DNA Methylation
Arabidopsis CTD-PHOSPHATASE-LIKE 1 (CPL1) is a protein phosphatase that can dephosphorylate RNA polymerase II C-terminal domain (CTD). Unlike typical CTD-phosphatases, CPL1 contains a double-stranded (ds) RNA-binding motif (dsRBM) and has been implicated for gene regulation mediated by dsRNA-dependent pathways. We investigated the role of CPL1 and its dsRBMs in various gene silencing pathways. ...
متن کاملThe Role of the Arabidopsis Exosome in siRNA–Independent Silencing of Heterochromatic Loci
The exosome functions throughout eukaryotic RNA metabolism and has a prominent role in gene silencing in yeast. In Arabidopsis, exosome regulates expression of a "hidden" transcriptome layer from centromeric, pericentromeric, and other heterochromatic loci that are also controlled by small (sm)RNA-based de novo DNA methylation (RdDM). However, the relationship between exosome and smRNAs in gene...
متن کاملCorrection: DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis
RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2014